1. Consider a particle of mass m within a one-dimensional (1D) infinite potential well

$$
V(x)= \begin{cases}0, & \text { if } 0 \leq x \leq L \\ \infty, & \text { otherwise }\end{cases}
$$

where L is a positive constant. Suppose the particle is initially in the ground state and the right wall of the well moves suddenly from $x=L$ to $x=2 L$, while leaving the wave function of the particle undisturbed at that instant. If energy is measured for the particle:
(a) (10 points) What is the most probable result and the corresponding probability?
(b) (10 points) What is the expectation value of the energy?
2. Consider a particle confined to a ring of radius R on the $x y$-plane with the z-axis passing through its center. Suppose the particle has the wave function

$$
\psi(\phi)=\mathcal{N}[1+2 i \cos (3 \phi)],
$$

where \mathcal{N} is a normalization constant, ϕ is the azimuthal angle in cylindrical coordinates, and $i \equiv \sqrt{-1}$.
(a) (5 points) Find the normalization constant \mathcal{N}.
(b) (10 points) Find the amplitudes c_{m} in the expansion

$$
\psi(\phi)=\sum_{m=-\infty}^{\infty} c_{m} \Phi_{m}(\phi)
$$

with $\Phi_{m}(\phi) \equiv e^{i m \phi} / \sqrt{2 \pi}$.
(c) (10 points) If one measures the z-component of the particle's orbital angular momentum, what are the possible results and the corresponding probabilities?
3. Consider a 1D simple harmonic oscillator (sho) of mass m and frequency ω which has the Hamiltonian

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2},
$$

where \hat{p} and \hat{x} are, respectively, the momentum and the position operators.
(a) (10 points) Express the Hamiltonian \hat{H} in terms of the lowering operator

$$
\hat{a} \equiv \sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}+\frac{i \hat{p}}{m \omega}\right) .
$$

(b) (15 points) Suppose at time $t=0$ we have $\langle\hat{x}(0)\rangle=x_{0}$ and $\langle\hat{p}(0)\rangle=p_{0}$ for the sho, find $\langle\hat{x}(t)\rangle$ at any time t. (Hint: You may like to use the identity

$$
\left.\exp (\hat{B}) \hat{A} \exp (-\hat{B})=\hat{A}+[\hat{B}, \hat{A}]+\frac{1}{2!}[\hat{B},[\hat{B}, \hat{A}]]+\cdots .\right)
$$

(c) (30 points) If the sho carries a charge q and is under the action of a time-dependent homogeneous electric field (along the x-direction)

$$
\mathcal{E}(t)=\mathcal{E}_{0} \exp \left(-t^{2} / \tau^{2}\right) \cos \left(\omega_{0} t\right)
$$

where \mathcal{E}_{0}, τ, and ω_{0} are constants. Suppose at time $t \rightarrow-\infty$ the sho starts in the ground state $|0\rangle$, using first-order perturbation theory, find the probability that the sho will be found in other energy eigenstates $|n\rangle$ at time $t \rightarrow \infty$. (Hint: You may need $\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\pi / a}$.)

