1. Consider a one-dimensional (1D) simple harmonic oscillator (sho) of mass m and frequency ω which has the Hamiltonian

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2},
$$

where \hat{p} and \hat{x} are, respectively, the momentum and the position operators.
(a) (10 points) If the lowering operator is defined as

$$
\hat{a} \equiv \sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}+\frac{i \hat{p}}{m \omega}\right)
$$

where $i \equiv \sqrt{-1}$. Express the Hamiltonian in terms of the lowering operator and its Hermitian conjugate.
(b) (10 points) If $|n\rangle$ is the n-th energy eigenstate of the 1D sho $(n=0,1,2, \cdots)$, show that the state

$$
|\alpha\rangle \equiv e^{-\frac{\alpha}{2}} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle,
$$

where α is a complex number, is an eigenstate for the lowering operator given in (a).
(c) (10 points) For any complex number α, show that the operator

$$
\hat{D} \equiv \exp \left(\alpha \hat{a}^{\dagger}-\alpha^{*} \hat{a}\right)
$$

can shift the lowering operator by α by way of a unitary transformation.
2. (20 points) Consider a pair of electrons constrained to move along the x-direction in a total spin triplet state. Suppose the electrons interact through an attractive potential

$$
V\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
0, & \text { if }\left|x_{1}-x_{2}\right|>R, \\
-V_{0}, & \text { if }\left|x_{1}-x_{2}\right| \leq R,
\end{array}\right.
$$

where V_{0} and R are positive constants, and x_{1}, x_{2} are coordinates of the two electrons. Find the eigen-energies of the two electrons when their total momentum is zero.
3. For time-independent perturbation theory, the Hamiltonian is $H=H^{0}+H^{1}$ where H^{1} is small compared to H^{0}. We assume that to every eigenket $\left|E_{n}^{0}\right\rangle \equiv\left|n^{0}\right\rangle$ of H^{0} with eigenvalue E_{n}^{0}, and there is an eigenket $|n\rangle$ of H with eigenvalue E_{n}. The eigenkets and eigenvalues of H may be expanded in a perturbation series:

$$
\begin{aligned}
& |n\rangle=\left|n^{0}\right\rangle+\left|n^{1}\right\rangle+\left|n^{2}\right\rangle+\cdots \\
& E_{n}=E_{n}^{0}+E_{n}^{1}+E_{n}^{2}+\cdots
\end{aligned}
$$

where the superscript k on each term gives the power of H^{1}.
(a) (20 points) Prove that $E_{n}^{1}=\left\langle n^{0}\right| H^{1}\left|n^{0}\right\rangle$ and $E_{n}^{2}=\left\langle n^{0}\right| H^{1}\left|n^{1}\right\rangle=\sum_{m}^{\prime} \frac{\left.\left|\left\langle n^{0}\right| H^{1}\right| m^{0}\right\rangle\left.\right|^{2}}{E_{n}^{0}-E_{m}^{0}}$, where \sum_{m}^{\prime} means that $m \neq n$.
(b) (10 points) Consider $H^{1}=\lambda x^{4}$ for the oscillator problem. Show that $E_{n}^{1}=\frac{3 \hbar^{2} \lambda}{4 m^{2} \omega^{2}}[1+$ $\left.2 n+2 n^{2}\right]$.
4. In quantum mechanics, we have known the formula $J_{ \pm}|j m\rangle=\hbar[(j \mp m)(j \pm m+$ $1)]^{1 / 2}|j, m \pm 1\rangle$ where $J_{ \pm}=J_{x} \pm i J_{y}, J^{2}|j m\rangle=j(j+1) \hbar^{2}|j m\rangle$, and $J_{z}|j m\rangle=m \hbar|j m\rangle$. Consider the problem of the two angular momenta \mathbf{J}_{1} (system 1) and \mathbf{J}_{2} (system 2) with $\mathbf{J}=\mathbf{J}_{1}+\mathbf{J}_{2}$ (the whole system).
(a) (10 points) Show that

$$
\left|j_{1}+j_{2}, j_{1}+j_{2}-1\right\rangle=\left(\frac{j_{1}}{j_{1}+j_{2}}\right)^{1 / 2}\left|j_{1}\left(j_{1}-1\right), j_{2} j_{2}\right\rangle+\left(\frac{j_{2}}{j_{1}+j_{2}}\right)^{1 / 2}\left|j_{1} j_{1}, j_{2}\left(j_{2}-1\right)\right\rangle
$$

Note that the ket $|j m\rangle$ located in the lefthand side of " $=$ " is the eigenket of the whole system, i.e., $j=j_{1}+j_{2}$ and $m=j_{1}+j_{2}-1$ in this case. Furthermore, the kets $\left|j_{1} m_{1}, j_{2} m_{2}\right\rangle \equiv\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle$ located in the righthand side of " $=$ " are the product kets of systems 1 and 2, e.g., the first term $\left|j_{1} m_{1}, j_{2} m_{2}\right\rangle \equiv\left|j_{1} m_{1}\right\rangle \otimes\left|j_{2} m_{2}\right\rangle=\left|j_{1}\left(j_{1}-1\right), j_{2} j_{2}\right\rangle$ with $m_{1}=j_{1}-1$ and $m_{2}=j_{2}$.
(b) (10 points) Show that

$$
\left|j_{1}+j_{2}-1, j_{1}+j_{2}-1\right\rangle=\left(\frac{j_{1}}{j_{1}+j_{2}}\right)^{1 / 2}\left|j_{1} j_{1}, j_{2}\left(j_{2}-1\right)\right\rangle-\left(\frac{j_{2}}{j_{1}+j_{2}}\right)^{1 / 2}\left|j_{1}\left(j_{1}-1\right), j_{2} j_{2}\right\rangle
$$

