國立中正大學103學年度學士班二年級轉學生招生考試試題

數學系、地球與環境科學系、物理學系

學系別:資訊工程學系、電機工程學系、機械工程學系 科目:微積分

化學工程學系、通訊工程學系

第1節

第/頁,共3頁

一、單選題 (每題4分, 共16分)

- 1. A rectangle has its base on the x-axis and its upper two vertices on the parabola $y = 6 x^2$. What is the largest area the rectangle can have?
 - (A) $4\sqrt{2}$ (B) $6\sqrt{2}$ (C) 10 (D) 12 (E) None of the above
- 2. Find the area of the region enclosed by the curve $y=x\sin x$ and the x-axis on the interval $4\pi \le x \le 5\pi$.
 - (A) 8π (B) 9π (C) 4π (D) 5π (E) None of the above
- 3. Find the limit: $\lim_{x\to 0^+} (e^x + x)^{1/x}$
 - (A) 1 (B) e (C) e^2 (D) e^4 (E) None of the above
- 4. If f(5) = 4 and f'(5) = 2/3, find $(f^{-1})'(4)$
 - (A) 3/2 (B) 2/3 (C) 1/4 (D) 4/5 (E) None of the above
- 二、複選題(每題6分, 共24分) 請注意: 每題有一個或者一個以上正確答案, 答案完全正確得6分, 否則得0分.
 - 1. Which of the following must be true?

(A)
$$\lim_{n\to\infty} \tan\left(\frac{1}{n}\right) = 0$$
 (B) $\lim_{n\to\infty} \sqrt[n]{3^n + 2^n} = 3$

(C)
$$\lim_{n \to \infty} \frac{\tan^{-1} n}{n} = 1$$
 (D) $\lim_{n \to \infty} \left[\ln(2n^2 + 1) - \ln(n^2 + 1) \right] = 2$

國立中正大學103學年度學士班二年級轉學生招生考試試題

數學系、地球與環境科學系、物理學系

學系別:資訊工程學系、電機工程學系、機械工程學系 科目:微積分

化學工程學系、通訊工程學系

第1節

第2頁,共3頁

- 2. Suppose that f'(x) > 0 for all $x \in \mathbb{R}$ and that f(2) = 0. Let $g(x) = \int_0^x f(t)dt$. Which of the following must be true?
 - (A) The graph of g is increasing on (0,2).
 - (B) g is a nonnegative continuous function.
 - (C) The graph of g has a horizontal tangent at x = 2.
 - (D) The graph of g does not have any inflection point.
- 3. Suppose that series $\sum_{n=0}^{\infty} a_n x^n$ converges when x=-3 and diverges when x=5. Which of the following must be true?

(A)
$$\sum_{n=0}^{\infty} a_n$$
 converges. (B) $\sum_{n=0}^{\infty} a_n (-2)^n$ converges.

(C)
$$\sum_{n=0}^{\infty} a_n (-5)^n$$
 diverges. (D) $\sum_{n=0}^{\infty} a_n 6^n$ diverges.

- 4. Let $f(x,y) = 4 + x^3 + y^3 3xy$. Which of the following must be true?
 - (A) f has a local maximum at (0,0). (B) f has a local minimum at (1,1).
 - (C) At the point P(1,0), f have the maximum rate of change in the direction $\frac{1}{\sqrt{2}}(1,-1)$.
 - (D) The maximum rate of change at the point P(1,0) is $\sqrt{2}$.
- 三、填空題(每個空格8分, 共40分)
 - 1. Evaluate the integral $\int_{1/3}^{3} \frac{\sqrt{x}}{x^2 + x} dx$. \Rightarrow (a)

國立中正大學103學年度學士班二年級轉學生招生考試試題

數學系、地球與環境科學系、物理學系

學系別:資訊工程學系、電機工程學系、機械工程學系 科目:微積分

化學工程學系、通訊工程學系

第1節

第3頁,共3頁

- 2. Find the first three nonzero terms in the Maclaurin series for the function $f(x) = e^{-x} \ln(1+x)$. \Rightarrow (b)
- 3. Find the area of the part of the sphere $x^2 + y^2 + z^2 = 4y$ that lies inside the paraboloid $y = x^2 + z^2$. \Rightarrow (c)
- 4. Let D be the region enclosed by $y = \frac{9}{x^2 + 9}$, y = 0, x = 0, and x = 3. Find the volume of the solid obtained by rotating about the x-axis. \Rightarrow (d)
- 5. Let F(x,y) be the vector field given by $F(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$. Calculate $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where C is the unit circle centered at the origin and oriented counterclockwise. \Rightarrow (e)

四、計算題(20分)必須有計算過程,僅有答案而沒有計算過程得0分

- 1. (10 \Rightarrow) Use Lagrange multipliers to find the maximum and minimum values of $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraints y z = 1 and $z^2 x^2 = 1$.
- 2. (10%) Let E be the solid bounded by the paraboloid $z=6-x^2-y^2$ and the surface $z=\sqrt{x^2+y^2}$ and let S be the boundary surface of E, given with positive (outward) orientation. Sketch the solid E and use the Divergence Theorem to find $\iint \mathbf{F} \cdot d\mathbf{S}$ for the vector field $\mathbf{F}(x,y,z)=(x^3,y^3,3xy)$