國立中正大學九十八學年度碩士班招生考試試題

系所別:物理學系 科目:近代物理

第3節

第 | 頁,共2頁

- (1) (15%) Two particles, each of (rest) mass m, collide head-on at velocity $\frac{4}{5}c$. They stick together. What is the mass of the composite object?
- (2) (15%) Express (a) Fine structure constant, (b) Classical radius of electron, (c) Electron Compton wavelength, in terms of the fundamental constants e, m_e, c , and Planck constant.
- (3) (10%) What is the ground state energy of an atom consisting of an electron and a positron bound to each other by their coulomb forces?
- (4) (10%) A typical atomic nucleus is about $5.0 \times 10^{-15} m$ in radius. Use the uncertainty principle to place a lower limit on the energy an electron must have if it is to be part of a nucleus.

國立中正大學九十八學年度碩士班招生考試試題

系所別:物理學系 科目:近代物理

第3節

第2頁,共2頁

(5) Consider a non-interacting electron gas confined in the potential well

$$V(x, y, z) = \begin{cases} 0 & \text{for } |z| < a, \\ \infty & \text{for } |z| \ge a. \end{cases}$$

where a is a positive constant. Denoting the mass of the electron m:

- (a) (10 %) Find the eigenfunction $\psi(x,y,z)$ for a single electron.
- (b) (15 %) Find the eigenenergy of the electron and make a plot for the eigenenergy versus the parallel component of the wavevector, ie. $k_{\parallel} \equiv \sqrt{k_x^2 + k_y^2}$.
- (c) (15 %) Suppose the Fermi energy of the system is

$$E_F = \frac{\pi^2 \hbar^2}{ma^2} \,,$$

find the electron density of the system at temperature T.

(6) (10 %) Consider a sodium atom in a magnetic field. If spin-orbit interactions are taken into account, how many different energy levels would the n=2 level split into?