物理學系

科目:應用數學

1.(10%) Find a continuous solution satisfying

$$\frac{\mathrm{d}y}{\mathrm{d}x} + y = f(x) \quad \text{where} \quad f(x) = \begin{cases} 1, & 0 \le 1 \\ 0, & x > 1 \end{cases}$$

and the initial condition y(0) = 0.

2.(15%) Use the power series mothod to solve the following differential equation

$$y'' + (\cos x)y = 0.$$

3.(15%) Evaluate the following integral

$$\int_0^\infty \frac{\ln x}{x^2 + 4} \mathrm{d}x.$$

4.(10%) Let X and Y be independent Poisson variables with parameters λ and μ . Show that the sum X+Y is also Poisson.

5. (10%) Two lines have direction cosines $\cos \alpha$, $\cos \beta$, $\cos \gamma$, and $\cos \alpha'$, $\cos \beta'$, $\cos \gamma'$, respectively. Form trigonometric considerations, prove that the angle θ between these lines is given by

$$\cos \theta = \cos \alpha \cos \alpha' + \cos \beta \cos \beta' + \cos \gamma \cos \gamma'.$$

6. (10%) Show that the following matrix is a unitary matrix.

$$\begin{pmatrix} \frac{1}{4}(1+i\sqrt{3}) & \frac{\sqrt{3}}{2\sqrt{2}}(1+i) \\ \frac{-\sqrt{3}}{2\sqrt{2}}(1+i) & \frac{1}{4}(\sqrt{3}+i) \end{pmatrix}$$

- 7. (15%) Given the function f(x) = |x| for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. Find the Fourier series for f(x).
- 8. (15%) We consider an example of the use of the diagonalization process. A quadratic surface has the equation

$$x^2 + 6xy - 2y^2 - 2yz + z^2 = 24.$$

Rotate this quadratic surface to the principal axes.